Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 176
Filter
1.
Int. j. morphol ; 42(1): 216-224, feb. 2024. ilus
Article in English | LILACS | ID: biblio-1528818

ABSTRACT

SUMMARY: Senile osteoporosis is mainly caused by reduced osteoblast differentiation and has become the leading cause of fractures in the elderly worldwide. Natural organics are emerging as a potential option for the prevention and treatment of osteoporosis. This study was designed to study the effect of resveratrol on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in osteoporosis mice. A mouse model of osteoporosis was established by subcutaneous injection of dexamethasone and treated with resveratrol administered by gavage. In vivo and in vitro, we used western blot to detect protein expression, and evaluated osteogenic differentiation of BMSCs by detecting the expression of osteogenic differentiation related proteins, calcium deposition, ALP activity and osteocalcin content. Resveratrol treatment significantly increased the body weight of mice, the level of serum Ca2+, 25(OH)D and osteocalcin, ration of bone weight, bone volume/total volume, trabecular thickness, trabecular number, trabecular spacing and cortical thickness in osteoporosis mice. In BMSCs of osteoporosis mice, resveratrol treatment significantly increased the expression of Runx2, osterix (OSX) and osteocalcin (OCN) protein, the level of calcium deposition, ALP activity and osteocalcin content. In addition, resveratrol treatment also significantly increased the expression of SIRT1, p-PI3K / PI3K and p-AKT / AKT in BMSCs of osteoporosis mice. In vitro, resveratrol increased the expression of SIRT1, p-PI3K / PI3K and p-AKT / AKT, Runx2, OSX and OCN protein, the level of calcium deposition, ALP activity and osteocalcin content in BMSCs in a concentration-dependent manner, while SIRT1 knockdown significantly reversed the effect of resveratrol. Resveratrol can attenuate osteoporosis by promoting osteogenic differentiation of bone marrow mesenchymal stem cells, and the mechanism may be related to the regulation of SIRT1/PI3K/AKT pathway.


La osteoporosis senil es causada principalmente por una diferenciación reducida de osteoblastos y se ha convertido en la principal causa de fracturas en las personas mayores en todo el mundo. Los productos orgánicos naturales están surgiendo como una opción potencial para la prevención y el tratamiento de la osteoporosis. Este estudio fue diseñado para estudiar el efecto del resveratrol en la diferenciación osteogénica de las células madre mesenquimales de la médula ósea (BMSC) en ratones con osteoporosis. Se estableció un modelo de osteoporosis en ratones mediante inyección subcutánea de dexametasona y se trató con resveratrol administrado por sonda. In vivo e in vitro, utilizamos Western blot para detectar la expresión de proteínas y evaluamos la diferenciación osteogénica de BMSC detectando la expresión de proteínas relacionadas con la diferenciación osteogénica, la deposición de calcio, la actividad de ALP y el contenido de osteocalcina. El tratamiento con resveratrol aumentó significativamente el peso corporal de los ratones, el nivel sérico de Ca2+, 25(OH)D y osteocalcina, la proporción de peso óseo, el volumen óseo/ volumen total, el espesor trabecular, el número trabecular, el espaciado trabecular y el espesor cortical en ratones con osteoporosis. En BMSC de ratones con osteoporosis, el tratamiento con resveratrol aumentó significativamente la expresión de las proteínas Runx2, osterix (OSX) y osteocalcina (OCN), el nivel de deposición de calcio, la actividad de ALP y el contenido de osteocalcina. Además, el tratamiento con resveratrol también aumentó significativamente la expresión de SIRT1, p-PI3K/PI3K y p-AKT/AKT en BMSC de ratones con osteoporosis. In vitro, el resveratrol aumentó la expresión de las proteínas SIRT1, p-PI3K/PI3K y p- AKT/AKT, Runx2, OSX y OCN, el nivel de deposición de calcio, la actividad de ALP y el contenido de osteocalcina en BMSC de manera dependiente de la concentración, mientras que La caída de SIRT1 revirtió significativamente el efecto del resveratrol. El resveratrol puede atenuar la osteoporosis al promover la diferenciación osteogénica de las células madre mesenquimales de la médula ósea, y el mecanismo puede estar relacionado con la regulación de la vía SIRT1/PI3K/AKT.


Subject(s)
Animals , Male , Mice , Osteoporosis/drug therapy , Resveratrol/administration & dosage , Osteogenesis/drug effects , Cell Differentiation/drug effects , Blotting, Western , Disease Models, Animal , Sirtuin 1 , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Resveratrol/pharmacology , Mice, Inbred C57BL
2.
Journal of Southern Medical University ; (12): 432-437, 2022.
Article in Chinese | WPRIM | ID: wpr-936334

ABSTRACT

OBJECTIVE@#To explore the mechanism by which estradiol modulates the immunophenotype of macrophages through the endoplasmic reticulum stress pathway.@*METHODS@#Peritoneal macrophages isolated from C57 mice were cultured in the presence of 60 ng/mL interferon-γ (IFN-γ) followed by treatment with estradiol (1.0 nmol/L) alone, estradiol with estrogen receptor antagonist (Acolbifene, 4 nmol/L), estradiol with IRE1α inhibitor (4 μ 8 C), or estradiol with IRE1α agonist. After the treatments, the expression levels of MHC-Ⅱ, iNOS and endoplasmic reticulum stress marker proteins IRE1α, eIF2α and ATF6 in the macrophages were detected with Western blotting, and the mRNA levels of TGF-β, IL-6, IL-10 and TNF-α were detected with RT-PCR.@*RESULTS@#Estrogen treatment of the macrophages significantly decreased the expressions of M1-related proteins MHC-Ⅱ (P=0.021) and iNOS (P < 0.001) and the mRNA expressions of TNF-α (P=0.003) and IL-6 (P=0.004), increased the mRNA expression of TGF-β (P=0.002) and IL-10 (P=0.008), and up-regulated the protein expressions of IRE1α (P < 0.001) and its downstream transcription factor XBP-1 (P < 0.001). Addition of the estrogen inhibitor obviously blocked the effect of estrogen. Compared with estrogen treatment alone, combined treatment of the macrophages with estrogen and the IRE1α inhibitor 4 μ 8 C significantly up-regulated the protein expressions of MHC-Ⅱ (P=0.002) and iNOS (P=0.003) and the mRNA expressions of TNF-α (P=0.003) and IL-6 (P=0.024), and obviously down-regulated the mRNA expression of TGF-β (P < 0.001) and IL-10 (P < 0.001); these changes were not observed in cells treated with estrogen and the IRE1α agonist.@*CONCLUSION@#Estrogen can inhibit the differentiation of murine macrophages into a pro-inflammatory phenotype by up-regulating the IRE1α-XBP-1 signaling axis, thereby producing an inhibitory effect on inflammatory response.


Subject(s)
Animals , Mice , Cell Differentiation/drug effects , Endoribonucleases/metabolism , Estradiol/pharmacology , Estrogens/metabolism , Interleukin-10 , Interleukin-6/metabolism , Macrophages, Peritoneal/metabolism , Phenotype , Protein Serine-Threonine Kinases/metabolism , RNA, Messenger/metabolism , Signal Transduction/drug effects , Transforming Growth Factor beta/metabolism , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation/drug effects , X-Box Binding Protein 1/metabolism
3.
Journal of Southern Medical University ; (12): 354-359, 2022.
Article in Chinese | WPRIM | ID: wpr-936323

ABSTRACT

OBJECTIVE@#To investigate the the effects of leptin on the proliferation, differentiation and PTEN expression of rat retinal progenitor cells (RPCs) cultured under hypoxic condition.@*METHODS@#SD rat RPCs were cultured in normoxic conditions or exposed to hypoxia in the presence of 0, 0.3, 1.0, 3.0, 10, and 30 nmol/L leptin for 12, 48 and 72 h, and the cell viability was assessed using cell counting kit 8 (CCK 8) assay. The RPCs in primary culture were divided into control group, hypoxia group, and hypoxia+leptin group, and after 48 h of culture, the cell medium was replaced with differentiation medium and the cells were further cultured for 6 days. Immunofluorescence staining was employed to detect the cells positive for β-tubulin III and GFAP, and Western blotting was used to examine the expression of PTEN at 48 h of cell culture.@*RESULTS@#The first generation of RPCs showed suspended growth in the medium with abundant and bright cellular plasma and formed mulberry like cell spheres after 2 days of culture. Treatment with low-dose leptin (below 3.0 nmol/L) for 48 h obviously improved the viability of RPCs cultured in hypoxia, while at high concentrations (above 10 nmol/L), leptin significantly suppressed the cell viability (P < 0.05). The cells treated with 3.0 nmol/L leptin for 48 h showed the highest viability (P < 0.05). After treatment with 3.0 nmol/L leptin for 48 h, the cells with hypoxic exposure showed similar GFAP and β-tubulin Ⅲ positivity with the control cells (P>0.05), but exhibited an obvious down-regulation of PTEN protein expression compared with the control cells (P < 0.05).@*CONCLUSION@#In rat RPCs with hypoxic exposure, treatment with low dose leptin can promote the cell proliferation and suppress cellular PTEN protein expression without causing significant effects on cell differentiation.


Subject(s)
Animals , Rats , Cell Differentiation/drug effects , Cell Hypoxia/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Leptin/pharmacology , PTEN Phosphohydrolase/metabolism , Rats, Sprague-Dawley , Retina/metabolism , Stem Cells/metabolism , Tubulin
4.
Acta odontol. latinoam ; 33(2): 125-134, Sept. 2020. graf
Article in English | LILACS | ID: biblio-1130743

ABSTRACT

ABSTRACT Melatonin (MLT) is a potential signaling molecule in the homeostasis of bone metabolism and may be an important mediator of bone formation and stimulation. The aim of this in vitro study was to evaluate the effect of MLT on the viability, mRNA/protein expression and mineralization of pre-osteoblastic cells. The concentrations 5, 2.5, 1, 0.1 and 0.01 mM MLT were tested on pre-osteoblastic cells (MC3T3) compared to control (no MLT), evaluating proliferation and cell viability (C50), gene expression (RT-PCR) and secretion (ELISA) of COL-I and OPN at 24h, 48h and 72h, and the formation of mineral nodules (alizarin red and fast red) after 10 days of treatment. MLT at 5 and 2.5 mM proved to be cytotoxic (C50), so only 0.01, 0.1 and 1 mM were used for the subsequent analyses. OPN mRNA expression increased with MLT at 0.1 mM - 1 mM, which was followed by increased secretion of OPN both at 24h and 72h compared to the remaining groups (p <0.05). COL-I mRNA and COL-1 secretion followed the same pattern as OPN at 0.1 mM MLT at 72h of treatment (p <0.05). Regarding mineralization, all MLT doses (except 1mM) caused an increase (p <0.05) in the formation of mineral nodules compared to the control. Melatonin at 0.01mM - 1mM had a stimulatory effect on osteoblasts by upregulating COL-I and OPN expression/ secretion and mineralization, thereby fostering osteogenesis.


RESUMO A melatonina (MLT) é uma molécula potencial de sinalização na homeostase do metabolismo ósseo e pode ser um importante mediador da formação e estimulação óssea. O objetivo deste estudo in vitro foi avaliar o efeito da MLT na viabilidade, na expressão do mRNA da proteína e mineralização de células préosteoblásticas. As concentrações de MLT 5, 2,5, 1, 0,1 e 0,01 mM foram testadas em células pré-osteoblásticas da linhagem MC3T3 em comparação ao controle (sem MLT), avaliando a proliferação e a viabilidade celular (C50), expressão gênica (rtPCR) e secreção (Elisa) de Colágeno tipo 1 (COL-I) e osteopontina (OPN) às 24, 48 e 72 horas, além da formação de nódulos minerais por meio do teste vermelho de Alizarina fast red após 10 dias de tratamento. MLT a 5 e 2,5 mM provou ser tóxico (C50). Portanto, as concentrações de 0,01, 0,1 e 1 mM foram utilizadas para as análises subsequentes. A expressão do mRNA da OPN aumentou com MLT a 0,1 mM-1mM, seguida pela secreção aumentada de OPN às 24 e 72 horas em comparação aos demais grupos (p<0,05). O mRNA de COL-I e a secreção de COL-I seguiram o mesmo padrão do OPN a 0,1 mM de MLT em 72 horas de tratamento (p<0,05). Em relação à mineralização, todas as doses de MLT (exceto 1mM) causaram aumento (p<0,05) na formação de nódulos minerais em comparação ao controle. A MLT na concentração entre 0,01mM a 1 mM teve um efeito estimulador sobre os osteoblastos, ao regular positivamente a expressão e secreção de COL-I e OPN, além da mineralização, favorecendo a osteogênese.


Subject(s)
Humans , Osteoblasts/drug effects , Osteogenesis/drug effects , Osteogenesis/genetics , Peptide Fragments/metabolism , Cell Differentiation/drug effects , Cell Differentiation/genetics , Matrix Metalloproteinase 2/metabolism , Osteopontin/metabolism , Melatonin/pharmacology , Osteoblasts/metabolism , Peptide Fragments/genetics , RNA, Messenger/genetics , Enzyme-Linked Immunosorbent Assay , Gene Expression , Gene Expression Regulation, Developmental/drug effects , Matrix Metalloproteinase 2/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Osteopontin/genetics , Real-Time Polymerase Chain Reaction
5.
J. appl. oral sci ; 28: e20190156, 2020. graf
Article in English | LILACS, BBO | ID: biblio-1090765

ABSTRACT

Abstract Objective The present study aimed to investigate the participation of focal adhesion kinases (FAK) in interactions between osteoblastic cells and titanium (Ti) surfaces with three different topographies, namely, untreated (US), microstructured (MS), and nanostructured (NS). Methodology Osteoblasts harvested from the calvarial bones of 3-day-old rats were cultured on US, MS and NS discs in the presence of PF-573228 (FAK inhibitor) to evaluate osteoblastic differentiation. After 24 h, we evaluated osteoblast morphology and vinculin expression, and on day 10, the following parameters: gene expression of osteoblastic markers and integrin signaling components, FAK protein expression and alkaline phosphatase (ALP) activity. A smooth surface, porosities at the microscale level, and nanocavities were observed in US, MS, and NS, respectively. Results FAK inhibition decreased the number of filopodia in cells grown on US and MS compared with that in NS. FAK inhibition decreased the gene expression of Alp, bone sialoprotein, osteocalcin, and ALP activity in cells grown on all evaluated surfaces. FAK inhibition did not affect the gene expression of Fak, integrin alpha 1 ( Itga1 ) and integrin beta 1 ( Itgb1 ) in cells grown on MS, increased the gene expression of Fak in cells grown on NS, and increased the gene expression of Itga1 and Itgb1 in cells grown on US and NS. Moreover, FAK protein expression decreased in cells cultured on US but increased in cells cultured on MS and NS after FAK inhibition; no difference in the expression of vinculin was observed among cells grown on all surfaces. Conclusions Our data demonstrate the relevance of FAK in the interactions between osteoblastic cells and Ti surfaces regardless of surface topography. Nanotopography positively regulated FAK expression and integrin signaling pathway components during osteoblast differentiation. In this context, the development of Ti surfaces with the ability to upregulate FAK activity could positively impact the process of implant osseointegration.


Subject(s)
Animals , Osteoblasts/drug effects , Sulfones/pharmacology , Titanium/chemistry , Quinolones/pharmacology , Focal Adhesion Protein-Tyrosine Kinases/antagonists & inhibitors , Osteoblasts/physiology , Sulfones/chemistry , Surface Properties , Microscopy, Electron, Scanning , Signal Transduction , Gene Expression , Integrins/analysis , Cell Differentiation/drug effects , Cells, Cultured , Osseointegration/drug effects , Rats, Wistar , Quinolones/chemistry , Cell Proliferation/drug effects , Focal Adhesion Protein-Tyrosine Kinases/analysis , Focal Adhesion Protein-Tyrosine Kinases/chemistry , Real-Time Polymerase Chain Reaction
6.
J. appl. oral sci ; 27: e20180396, 2019. graf
Article in English | LILACS, BBO | ID: biblio-1002404

ABSTRACT

Abstract Endodontic revascularization is based on cell recruitment into the necrotic root canal of immature teeth after chemical disinfection. The clinical outcome depends on the ability of surviving cells from the apical tissue to differentiate and promote hard tissue deposition inside the dentinal walls. Objective To investigate the effect of calcium hydroxide (CH) and modified triple antibiotic paste (mTAP - ciprofloxacin, metronidazole and cefaclor) on the viability and mineralization potential of apical papilla cells (APC) in vitro . Material and Methods APC cultures were kept in contact with CH or mTAP (250-1000 µg/mL) for 5 days, after which cell viability was assessed using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Next, APCs were subjected to CH or mTAP at 250 µg/mL for 5 days before inducing the differentiation assay. After 14 and 21 days, calcium deposition was assessed by the Alizarin Red S staining method, followed by elution and quantification using spectrophotometry. Data were analyzed using ANOVA followed by Tukey post hoc test. Results CH induced cell proliferation, whereas mTAP showed significant cytotoxicity at all concentrations tested. APC treated with CH demonstrated improved mineralization capacity at 14 days, while, for mTAP, significant reduction on the mineralization rate was observed for both experimental periods (14 and 21 days). Conclusion Our findings showed that CH induces cell proliferation and improves early mineralization, whereas mTAP was found cytotoxic and reduced the mineralization potential in vitro of APCs.


Subject(s)
Humans , Root Canal Irrigants/pharmacology , Calcium Hydroxide/pharmacology , Dental Papilla/cytology , Anti-Bacterial Agents/pharmacology , Tetrazolium Salts , Time Factors , Ciprofloxacin/pharmacology , Cefaclor/pharmacology , Cell Differentiation/drug effects , Cell Survival/drug effects , Cells, Cultured , Reproducibility of Results , Analysis of Variance , Dental Papilla/drug effects , Cell Proliferation/drug effects , Formazans , Metronidazole/pharmacology
7.
Biol. Res ; 52: 26, 2019. graf
Article in English | LILACS | ID: biblio-1011428

ABSTRACT

BACKGROUND: Acute myeloid leukemia (AML) is an aggressive and mostly incurable hematological malignancy with frequent relapses after an initial response to standard chemotherapy. Therefore, novel therapies are urgently required to improve AML clinical outcomes. 4-Amino-2-trifluoromethyl-phenyl retinate (ATPR), a novel all-trans retinoic acid (ATRA) derivative designed and synthesized by our team, has been proven to show biological anti-tumor characteristics in our previous studies. However, its potential effect on leukemia remains unknown. The present research aims to investigate the underlying mechanism of treating leukemia with ATPR in vitro. METHODS: In this study, the AML cell lines NB4 and THP-1 were treated with ATPR. Cell proliferation was analyzed by the CCK-8 assay. Flow cytometry was used to measure the cell cycle distribution and cell differentiation. The expression levels of cell cycle and differentiation-related proteins were detected by western blotting and immunofluorescence staining. The NBT reduction assay was used to detect cell differentiation. RESULTS: ATPR inhibited cell proliferation, induced cell differentiation and arrested the cell cycle at the G0/G1 phase. Moreover, ATPR treatment induced a time-dependent release of reactive oxygen species (ROS). Additionally, the PTEN/PI3K/Akt pathway was downregulated 24 h after ATPR treatment, which might account for the anti-AML effects of ATPR that result from the ROS-mediated regulation of the PTEN/PI3K/AKT signaling pathway. CONCLUSIONS: Our observations could help to develop new drugs targeting the ROS/PTEN/PI3K/Akt pathway for the treatment of AML.


Subject(s)
Humans , Retinoids/pharmacology , Reactive Oxygen Species/metabolism , Antineoplastic Agents/pharmacology , Fluoroimmunoassay , Leukemia, Myeloid, Acute , Signal Transduction , Down-Regulation , Cell Differentiation/drug effects , Cell Survival/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , PTEN Phosphohydrolase/drug effects , PTEN Phosphohydrolase/metabolism , Proto-Oncogene Proteins c-akt/drug effects , Proto-Oncogene Proteins c-akt/metabolism
8.
Biol. Res ; 52: 54-54, 2019. ilus
Article in English | LILACS | ID: biblio-1505774

ABSTRACT

BACKGROUND: IcarisideII (ICAII) could promote the differentiation of adipose tissue-derived stem cells (ADSCs) to Schwann cells (SCs), leading to improvement of erectile function (EF) and providing a realistic therapeutic option for the treatment of erectile dysfunction (ED). However, the underlying molecular mechanisms of ADSCs and ICAII in this process remain largely unclear. METHODS: ADSCs were treated with different concentrations of ICAII. Cell proliferation was determined by MTT assay. qRT-PCR and western blot were performed to detect expressions of SCs markers, signal transducer and activator of transcription-3 (STAT3), and microRNA-let-7i (let-7i). Luciferase reporter assay was conducted to verify the regulatory relationship between let-7i and STAT3. The detection of intracavernosal pressure (ICP) and the ratio of ICP/mean arterial pressure (MAP) were used to evaluate the EF in bilateral cavernous nerve injury (BCNI) rat models. RESULTS: ICAII promoted cell proliferation of ADSCs in a dose-dependent manner. The mRNA and protein levels of SCs markers were increased by ICAII treatment in a dose-dependent manner in ADSCs. Moreover, let-7i was significantly decreased in ICAII-treated ADSCs and upregulation of let-7i attenuated ICAII-induced promotion of SCs markers. In addition, STAT3 was a direct target of let-7i and upregulated in ICAII-treated ADSCs. Interestingly, overexpression of STAT3 abated the let-7i-mediated inhibition effect on differentiation of ADSCs to SCs and rescued the ICAII-mediated promotion effect on it. Besides, combination treatment of ADSCs and ICAII preserved the EF of BCNI rat models, which was undermined by let-7i overexpression. CONCLUSION: ICAII was effective for preserving EF by promoting the differentiation of ADSCs to SCs via modulating let-7i/STAT3 pathway.


Subject(s)
Animals , Male , Rats , Schwann Cells/drug effects , Flavonoids/pharmacology , Cell Differentiation/drug effects , Adipose Tissue/cytology , Mesenchymal Stem Cells/drug effects , Erectile Dysfunction/drug therapy , Transfection , Blotting, Western , Rats, Sprague-Dawley , Disease Models, Animal
9.
Braz. oral res. (Online) ; 33: e013, 2019. graf
Article in English | LILACS | ID: biblio-989479

ABSTRACT

Abstract Recent studies on functional tissue regeneration have focused on substances that favor cell proliferation and differentiation, including the bioactive phenolic compounds present in grape seed extract (GSE). The aim of this investigation was to evaluate the stimulatory potential of GSE in the functional activity of undifferentiated pulp cells and odontoblast-like cells. OD-21 and MDPC-23 cell lines were cultivated in odontogenic medium until subconfluence, seeded in 24-well culture plates in a concentration of 2x104/well and divided into: 1) OD-21 without GSE; 2) OD-21+10 µg/mL of GSE; 3) MDPC-23 without GSE; 4) MDPC-23+10 µg/mL of GSE. Cell proliferation, in situ detection of alkaline phosphatase (ALP) and total protein content were assessed after 3, 7 and 10 days, and mineralization was evaluated after 14 days. The data were analyzed by ANOVA statistical tests set at a 5% level of significance. Results revealed that cell proliferation increased after 10 days, and protein content, after 7 days of culture in MDPC-23 cells. In situ ALP staining intensity was higher in undifferentiated pulp cells and odontoblast-like cells after 7 and 10 days, respectively. A discrete increase in MDPC-23 mineralization after GSE treatment was observed despite OD-21 cells presenting a decrease in mineralized nodule deposits. Data suggest that GSE favors functional activity of differentiated cells more broadly than undifferentiated cells (OD-21). More studies with different concentrations of GSE must be conducted to confirm its benefits to cells regarding dentin regeneration.


Subject(s)
Animals , Mice , Dental Pulp/cytology , Dental Pulp/drug effects , Cell Proliferation/drug effects , Grape Seed Extract/pharmacology , Odontoblasts/drug effects , Reference Values , Time Factors , Cell Differentiation/drug effects , Cell Line , Cells, Cultured , Reproducibility of Results , Dentin/cytology , Dentin/drug effects , Odontogenesis/drug effects
10.
J. appl. oral sci ; 27: e20180317, 2019. tab, graf
Article in English | LILACS, BBO | ID: biblio-984571

ABSTRACT

Abstract Bone morphogenetic protein type 2 (BMP-2) and retinoic acid (RA) are osteoinductive factors that stimulate endogenous mechanisms of bone repair which can be applied on management of osseous defects in oral and maxillofacial fields. Objective Considering the different results of RA on osteogenesis and its possible use to substitute/potency BMP-2 effects, this study evaluated the outcomes of BMP-2, RA, and BMP-2+RA treatments on in vitro osteogenic differentiation of human adipose-derived stem cells (ASCs) and the signaling pathway(s) involved. Material and Methods ASCs were treated every other day with basic osteogenic medium (OM) alone or supplemented with BMP-2, RA, or BMP-2+RA. Alkaline phosphatase (ALP) activity was determined using the r-nitrophenol method. Extracellular matrix mineralization was evaluated using von Kossa staining and calcium quantification. Expression of osteonectin and osteocalcin mRNA were determined using qPCR. Smad1, Smad4, phosphorylated Smad1/5/8, BMP-4, and BMP-7 proteins expressions were analyzed using western blotting. Signaling pathway was evaluated using the IPA® software. Results RA promoted the highest ALP activity at days 7, 14, 21, and 28, in comparison to BMP-2 and BMP-2+RA. BMP-2+RA best stimulated phosphorylated Smad1/5/8 protein expression at day 7 and Smad4 expression at days 7, 14, 21, and 28. Osteocalcin and osteonectin mRNA expressions were best stimulated by BMP-2+RA at day 7. Matrix mineralization was most improved by BMP-2+RA at days 12 and 32. Additionally, BMP-2+RA promoted the highest BMP signaling pathway activation at days 7 and 14, and demonstrated more activation of differentiation of bone-forming cells than OM alone. Conclusions In summary, RA increased the effect of BMP-2 on osteogenic differentiation of human ASCs.


Subject(s)
Humans , Osteogenesis/drug effects , Tretinoin/pharmacology , Cell Differentiation/drug effects , Bone Morphogenetic Protein 2/drug effects , Mesenchymal Stem Cells/drug effects , Osteoblasts/drug effects , Osteogenesis/physiology , Reference Values , Time Factors , Osteocalcin/analysis , Osteocalcin/drug effects , Osteonectin/analysis , Osteonectin/drug effects , Cell Differentiation/physiology , Cells, Cultured , Blotting, Western , Reproducibility of Results , Analysis of Variance , Alkaline Phosphatase/analysis , Alkaline Phosphatase/adverse effects , Bone Morphogenetic Protein 2/metabolism , Mesenchymal Stem Cells/metabolism
11.
J. appl. oral sci ; 27: e20180150, 2019. graf
Article in English | LILACS, BBO | ID: biblio-975883

ABSTRACT

Abstract Objectives This investigation aimed to assess the differentiation inhibitory effects of ProRoot MTA® (PMTA) and Biodentine® (BIOD) on osteoclasts originated from murine bone marrow macrophages (BMMs) and compare these effects with those of alendronate (ALD). Materials and Methods Mouse BMMs were cultured to differentiate into osteoclasts with macrophage colony-stimulating factor and receptor activator of NF-κB (RANKL), treated with lipopolysaccharide. After application with PMTA, BIOD, or ALD, cell toxicities were examined using WST-1 assay kit, and RANKL-induced osteoclast differentiation and activities were determined by resorption pit formation assay and tartrate-resistant acid phosphate (TRAP) staining. The mRNA levels of osteoclast activity-related genes were detected with quantitative real time polymerase chain reaction. Expressions of molecular signaling pathways were assessed by western blot. All data were statistically analyzed with one-way ANOVA and Tukey's post-hoc test (p<0.05). Results Mouse BMMs applied with PMTA, BIOD, or ALD showed highly reduced levels of TRAP-positive osteoclasts. The BIOD treated specimens suppressed mRNA expressions of cathepsin K, TRAP, and c-Fos. Nonetheless, it showed a lower effect than PMTA or ALD applications. Compared with ALD, PMTA and BIOD decreased RANKL-mediated phosphorylation of ERK1/2 and IκBα. Conclusions PMTA and BIOD showed the inhibitory effect on osteoclast differentiation and activities similar to that of ALD through IκB phosphorylation and suppression of ERK signaling pathways.


Subject(s)
Animals , Mice , Osteoclasts/drug effects , Root Canal Filling Materials/pharmacology , Bone Marrow Cells/drug effects , Cell Differentiation/drug effects , Silicates/pharmacology , Calcium Compounds/pharmacology , Alendronate/pharmacology , Bone Density Conservation Agents/pharmacology , Osteoclasts/physiology , Osteogenesis/drug effects , Phosphorylation/drug effects , Root Resorption/prevention & control , Time Factors , Bone Marrow Cells/cytology , Cell Survival/drug effects , Cells, Cultured , Blotting, Western , Reproducibility of Results , MAP Kinase Signaling System/drug effects , I-kappa B Proteins/drug effects , RANK Ligand/analysis , RANK Ligand/drug effects , Real-Time Polymerase Chain Reaction , Tartrate-Resistant Acid Phosphatase
12.
J. appl. oral sci ; 26: e20160629, 2018. graf
Article in English | LILACS, BBO | ID: biblio-893696

ABSTRACT

Abstract Objective: The aim of the study was to evaluate the effects of the capping materials mineral trioxide aggregate (MTA), calcium hydroxide (CH) and BiodentineTM (BD) on stem cells from human exfoliated deciduous teeth (SHED) in vitro. Material and Methods: SHED were cultured for 1 - 7 days in medium conditioned by incubation with MTA, BD or CH (1 mg/mL), and tested for viability (MTT assay) and proliferation (SRB assay). Also, the migration of serum-starved SHED towards conditioned media was assayed in companion plates, with 8 μm-pore-sized membranes, for 24 h. Gene expression of dentin matrix protein-1 (DMP-1) was evaluated by reverse-transcription polymerase chain reaction. Regular culture medium with 10% FBS (without conditioning) and culture medium supplemented with 20% FBS were used as controls. Results: MTA, CH and BD conditioned media maintained cell viability and allowed continuous SHED proliferation, with CH conditioned medium causing the highest positive effect on proliferation at the end of the treatment period (compared with BD and MTA) (p<0.05). In contrast, we observed increased SHED migration towards BD and MTA conditioned media (compared with CH) (p<0.05). A greater amount of DMP-1 gene was expressed in MTA group compared with the other groups from day 7 up to day 21. Conclusion: Our results show that the three capping materials are biocompatible, maintain viability and stimulate proliferation, migration and differentiation in a key dental stem cell population.


Subject(s)
Humans , Oxides/pharmacology , Stem Cells/drug effects , Tooth, Deciduous/cytology , Calcium Hydroxide/pharmacology , Silicates/pharmacology , Calcium Compounds/pharmacology , Aluminum Compounds/pharmacology , Pulp Capping and Pulpectomy Agents/pharmacology , Phosphoproteins/analysis , Stem Cells/physiology , Time Factors , Tooth, Deciduous/drug effects , Materials Testing , Cell Differentiation/drug effects , Cell Movement/drug effects , Cell Survival/drug effects , Cells, Cultured , Reproducibility of Results , Analysis of Variance , Extracellular Matrix Proteins/analysis , Reverse Transcriptase Polymerase Chain Reaction , Dental Pulp Capping/methods , Cell Proliferation/drug effects , Drug Combinations , Glyceraldehyde-3-Phosphate Dehydrogenases/drug effects
13.
Yonsei Medical Journal ; : 85-91, 2018.
Article in English | WPRIM | ID: wpr-742500

ABSTRACT

PURPOSE: Ascorbic acid has been reported to have an adipogenic effect on 3T3-L1 preadipocytes, while evidence also suggests that ascorbic acid reduces body weight in humans. In this study, we tested the effects of ascorbic acid on adipogenesis and the balance of lipid accumulation in ovariectomized rats, in addition to long-term culture of differentiated 3T3-L1 adipocytes. MATERIALS AND METHODS: Murine 3T3-L1 fibroblasts and ovariectomized rats were treated with ascorbic acid at various time points. In vitro adipogenesis was analyzed by Oil Red O staining, and in vivo body fat was measured by a body composition analyzer using nuclear magnetic resonance. RESULTS: When ascorbic acid was applied during an early time point in 3T3-L1 preadipocyte differentiation and after bilateral ovariectomy (OVX) in rats, adipogenesis and fat mass gain significantly increased, respectively. However, lipid accumulation in well-differentiated 3T3-L1 adipocytes showed a significant reduction when ascorbic acid was applied after differentiation (10 days after induction). Also, oral ascorbic acid administration 4 weeks after OVX in rats significantly reduced both body weight and subcutaneous fat layer. In comparison to the results of ascorbic acid, which is a well-known cofactor for an enzyme of collagen synthesis, and the antioxidant ramalin, a potent antioxidant but not a cofactor, showed only a lipolytic effect in well-differentiated 3T3-L1 adipocytes, not an adipogenic effect. CONCLUSION: Taking these results into account, we concluded that ascorbic acid has both an adipogenic effect as a cofactor of an enzymatic process and a lipolytic effect as an antioxidant.


Subject(s)
Animals , Female , Mice , 3T3-L1 Cells , Adipocytes/drug effects , Adipocytes/metabolism , Adipogenesis/drug effects , Antioxidants/pharmacology , Ascorbic Acid/pharmacology , Body Composition/drug effects , Body Weight/drug effects , Cell Differentiation/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Lipolysis/drug effects , Ovariectomy , Rats, Sprague-Dawley
14.
J. appl. oral sci ; 25(6): 631-640, Nov.-Dec. 2017. tab, graf
Article in English | LILACS, BBO | ID: biblio-893662

ABSTRACT

Abstract Objectives: The primary purpose of this study was to examine the effects of triethylene glycol dimethacrylate (TEGDMA) on odontoclastic differentiation in the dental pulp tissue. Material and Methods: The effects of different TEGDMA dosages on the odontoclastic differentiation capability of dental pulp cells were analyzed in vitro using the following methodologies: i) flow cytometry and tartrate-resistant acid phosphatase (TRAP) staining; ii) apoptotic effects using Annexin V staining; iii) mRNA expression of osteoprotegerin (OPG) and receptor activator of nuclear factor (NF)-kB ligand (RANKL) genes by quantitative Real-time PCR (qRT-PCR); and iv) OPG and RANKL protein expression by enzyme-linked immunosorbent assay (ELISA). Results: TEGDMA caused relatively less odontoclastic differentiation in comparison with the control group; however, odontoclastic differentiation augmented with increasing doses of TEGDMA (p<0.05). The mRNA and protein expression of OPG was lower in TEGDMA treated pulp cells than in the control group (p<0.05). While the mRNA expression of RANKL remained unchanged compared to the control group (p>0.05), its protein expression was higher than the control group (p<0.05). In addition, TEGDMA increased the apoptosis of dental pulp cells dose dependently. Conclusions: TEGDMA reduced the odontoclastic differentiation ability of human dental pulp cells. However, odontoclastic differentiation ratios increased proportionally with the increasing dose of TEGDMA.


Subject(s)
Humans , Polyethylene Glycols/pharmacology , Polymethacrylic Acids/pharmacology , Cell Differentiation/drug effects , Dental Pulp/drug effects , Tartrate-Resistant Acid Phosphatase/drug effects , Enzyme-Linked Immunosorbent Assay , Lipopolysaccharide Receptors/metabolism , Dental Pulp/cytology , RANK Ligand/metabolism , Real-Time Polymerase Chain Reaction , Flow Cytometry
15.
J. appl. oral sci ; 25(5): 515-522, Sept.-Oct. 2017. graf
Article in English | LILACS, BBO | ID: biblio-893656

ABSTRACT

Abstract Hypersensitivity, local irritative and cytotoxic effects are known for the chemical components of Syzygium aromaticum and Cinnamomum zeylanicum contained in dental materials. However, there is no intimate data in dentistry using the whole extracts of these plants and introducing new ones. Salvia triloba is a well-known anti-inflammatory plant that correspondingly could be used in several dental traumas. Objectives: We aimed to show and compare the effect of S. aromaticum, C. zeylanicum, and S. triloba extracts on dental pulp stem cells (DPSCs) proliferation, differentiation, and immune responses. Material and Methods: Using xCELLigence, a real time monitoring system, we obtained a growth curve of DPSCs with different concentrations of the Extracts. A dose of 10 μg/mL was the most efficient concentration for vitality. Osteogenic differentiation and anti-inflammatory activities were determined by using an ELISA Kit to detect early and late markers of differentiation. Results: The level of osteonectin (ON, early osteogenic marker) decreased, which indicated that the osteogenic differentiation may be accelerated with addition of extracts. However, the level of osteocalcin (OCN, late osteogenic marker and sign of calcium granulation) differed among the extracts, in which S. aromaticum presented the highest value, followed by S. triloba and C. zeylanicum. Surprisingly, the determined calcium granules were reduced in S. aromaticum and S. triloba. In response to tumor necrosis factor alpha (TNF-α), S. triloba-treated DPSCs showed the most reduced level of IL-6 cytokine level. We suggest C. zeylanicum as a promising osteogenic inducer and S. triloba as a potent anti-inflammatory agent, which could be used safely in biocomposite or scaffold fabrications for dentistry. Conclusions: Because calcium granule formation and cell viability play a critical role in hard tissue formation, S. aromaticum in dentistry should be strictly controlled, and the mechanism leading to reduced calcium granule formation should be identified.


Subject(s)
Humans , Adolescent , Young Adult , Drugs, Chinese Herbal/pharmacology , Plant Extracts/pharmacology , Cinnamomum zeylanicum/chemistry , Syzygium/chemistry , Dental Pulp/cytology , Mesenchymal Stem Cells/drug effects , Anti-Inflammatory Agents/pharmacology , Osteogenesis/drug effects , Time Factors , Enzyme-Linked Immunosorbent Assay , Antigens, Differentiation/analysis , Osteocalcin/analysis , Osteonectin/analysis , Cell Differentiation/drug effects , Cells, Cultured , Calcium/analysis , Reproducibility of Results , Analysis of Variance , Cytokines/analysis , Dental Pulp/drug effects , Cell Proliferation/drug effects , Flow Cytometry
16.
J. appl. oral sci ; 25(3): 299-309, May-June 2017. graf
Article in English | LILACS, BBO | ID: biblio-893619

ABSTRACT

Abstract Objective To assess the effect of fibronectin (Fn) and porcine type I collagen (PCOL) on odontoblast-like cells in vitro. Material and Methods Rat odontoblast-like cells (MDPC-23 cells) were inoculated and cultured on Fn-coated or type I collagen-coated substrates. Proliferation assay, alkaline phosphatase activity (ALP activity), mRNA expression of hard tissue-forming markers, and Alizarin red staining were investigated over a period of 10 days. Results Cells maintained a high proliferation activity on Fn and PCOL even at a low seeding concentration (0.5×104/mL) as demonstrated by CCK-8 assay. The proliferation activity of cells on Fn increases in a concentration-dependent manner while it reached a plateau after 10 µg/mL. Cells adopted long, thin and spindle shape on Fn(10-50) and PCOL. Parallel actin filaments were observed in MDPC-23 cells cultured on Fn and PCOL. ALP activity was markedly up-regulated on Fn and PCOL-coated surfaces. Importantly, gene expression of BSP (Fn10: 2.44±0.32; Fn20: 3.05±0.01; Fn30: 2.90±0.21; Fn40: 2.74±0.30; Fn50: 2.64±0.12; PCOL: 2.20±0.03) and OCN (Fn10: 2.52±0.23; Fn20: 2.28±0.24; Fn30: 2.34±0.21; Fn40: 2.34±0.25; Fn50: 2.20±0.22; PCOL: 1.56±0.16) was significantly enhanced on Fn and PCOL substrates as compared with control; moreover, expression of integrin beta 1 (ITGB1), an ubiquitous cell surface receptor was augmented in Fn(10-50) and PCOL groups simultaneously. In accordance with the ALP activity and gene expression data, calcific deposition in cells grown on Fn(10-50) and PCOL was observed as well. Conclusion Despite the limitation of this study, the findings indicate that a surface coating of Fn enhances the proliferation, differentiation and mineralization of odontoblast-like cells by activation of integrin beta 1 (ITG B1). The promoting effects of Fn on MDPC-23 cells were achieved at a comparatively lower coating concentration than type I collagen (300 µg/mL). Specifically, it is suggested that the optimum coating concentration of Fn to be 10 µg/mL.


Subject(s)
Humans , Animals , Rats , Cell Differentiation/drug effects , Fibronectins/pharmacology , Cell Proliferation/drug effects , Odontoblasts/drug effects , Time Factors , Gene Expression , Cells, Cultured , Reproducibility of Results , Fluorescent Antibody Technique , Anthraquinones , Integrin beta1/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , Collagen Type I/pharmacology , Alkaline Phosphatase/analysis
17.
Rev. Assoc. Med. Bras. (1992) ; 63(2): 148-155, Feb. 2017. graf
Article in English | LILACS | ID: biblio-842539

ABSTRACT

Summary The skeletal muscle tissue has a remarkable ability to alter its plastic structural and functional properties after a harmful stimulus, regulating the expression of proteins in complex events such as muscle regeneration. In this context, considering that potential therapeutic agents have been widely studied, nutritional strategies have been investigated in order to improve the regenerative capacity of skeletal muscle. There is evidence of the modulatory action of fatty acids, such that oleic and linoleic acids, that are abundant in Western diets, on muscle function and trophism. Thus, fatty acids appear to be potential candidates to promote or impair the recovery of muscle mass and function during regeneration, since they modulate intracellular pathways that regulate myogenesis. This study is the first to describe and discuss the effect of fatty acids on muscle plasticity and trophism, with emphasis on skeletal muscle regeneration and in vitro differentiation of muscle cells.


Resumo O tecido muscular esquelético possui a notável capacidade plástica de alterar suas propriedades estruturais e funcionais após um estímulo lesivo, regulando a expressão de proteínas durante eventos complexos como a regeneração muscular. Nesse contexto, considerando que possíveis agentes terapêuticos vêm sendo amplamente estudados, estratégias nutricionais têm sido investigadas na perspectiva de melhorar a capacidade regenerativa do músculo esquelético. Há evidências da ação modulatória dos ácidos graxos, como os ácidos oleico e linoleico, que são abundantes nas dietas ocidentais, sobre a função muscular e o trofismo. Nesse sentido, os ácidos graxos parecem ser potenciais candidatos para promover ou prejudicar a recuperação da massa e a função muscular durante a regeneração, uma vez que modulam vias intracelulares reguladoras da miogênese. Este trabalho é o primeiro a descrever e discutir o efeito dos ácidos graxos sobre a plasticidade e o trofismo muscular, com ênfase na regeneração do músculo esquelético e na diferenciação de células musculares in vitro.


Subject(s)
Humans , Regeneration/physiology , Muscle, Skeletal/physiology , Fatty Acids/metabolism , Cell Differentiation/drug effects , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/metabolism , Myoblasts, Skeletal/cytology
18.
J. appl. oral sci ; 25(1): 42-52, Jan.-Feb. 2017. graf
Article in English | LILACS, BBO | ID: biblio-841161

ABSTRACT

Abstract Sodium alendronate is a bisphosphonate drug that exerts antiresorptive action and is used to treat osteoporosis. Objective The aim of this study was to evaluate the bone repair process at the bone/implant interface of osteoporotic rats treated with sodium alendronate through the analysis of microtomography, real time polymerase chain reactions and immunohistochemistry (RUNX2 protein, bone sialoprotein (BSP), alkaline phosphatase, osteopontin and osteocalcin). Material and Methods A total of 42 rats were used and divided in to the following experimental groups: CTL: control group (rats submitted to fictitious surgery and fed with a balanced diet), OST: osteoporosis group (rats submitted to a bilateral ovariectomy and fed with a low calcium diet) and ALE: alendronate group (rats submitted to a bilateral ovariectomy, fed with a low calcium diet and treated with sodium alendronate). A surface treated implant was installed in both tibial metaphyses of each rat. Euthanasia of the animals was conducted at 14 (immunhostochemistry) and 42 days (immunohistochemistry, micro CT and PCR). Data were subjected to statistical analysis with a 5% significance level. Results Bone volume (BV) and total pore volume were higher for ALE group (P<0.05). Molecular data for RUNX2 and BSP proteins were significantly expressed in the ALE group (P<0.05), in comparison with the other groups. ALP expression was higher in the CTL group (P<0.05). The immunostaining for RUNX2 and osteopontin was positive in the osteoblastic lineage cells of neoformed bone for the CTL and ALE groups in both periods (14 and 42 days). Alkaline phosphatase presented a lower staining area in the OST group compared to the CTL in both periods and the ALE at 42 days. Conclusion There was a decrease of osteocalcin precipitation at 42 days for the ALE and OST groups. Therefore, treatment with short-term sodium alendronate improved bone repair around the implants installed in the tibia of osteoporotic rats.


Subject(s)
Animals , Female , Osteoporosis/drug therapy , Dental Implants , Osseointegration/drug effects , Alendronate/pharmacology , Bone Density Conservation Agents/pharmacology , Osteoblasts/drug effects , Osteoporosis/physiopathology , Tibia/surgery , Time Factors , Immunohistochemistry , Ovariectomy , Bone Density/drug effects , Osteocalcin/analysis , Osteocalcin/drug effects , Cell Differentiation/drug effects , Reproducibility of Results , Rats, Wistar , Implants, Experimental , Dental Implantation, Endosseous , Alkaline Phosphatase/analysis , Alkaline Phosphatase/drug effects , Core Binding Factor Alpha 1 Subunit/analysis , Core Binding Factor Alpha 1 Subunit/drug effects , Osteopontin/analysis , Osteopontin/drug effects , X-Ray Microtomography , Real-Time Polymerase Chain Reaction
19.
Braz. j. med. biol. res ; 50(9): e5648, 2017. tab, graf
Article in English | LILACS | ID: biblio-888995

ABSTRACT

The association of bioactive molecules, such as vascular endothelial growth factor (VEGF), with nanofibers facilitates their controlled release, which could contribute to cellular migration and differentiation in tissue regeneration. In this research, the influence of their incorporation on a polylactic-co-glycolic acid (PLGA) scaffold produced by electrospinning on cell adhesion and viability and cytotoxicity was carried out in three groups: 1) PLGA/BSA/VEGF; 2) PLGA/BSA, and 3) PLGA. Morphology, fiber diameter, contact angle, loading efficiency and controlled release of VEGF of the biomaterials, among others, were measured. The nanofibers showed smooth surfaces without beads and with interconnected pores. PLGA/BSA/VEGF showed the smallest water contact angle and VEGF released for up to 160 h. An improvement in cell adhesion was observed for the PLGA/BSA/VEGF scaffolds compared to the other groups and the scaffolds were non-toxic for the cells. Therefore, the scaffolds were shown to be a good strategy for sustained delivery of VEGF and may be a useful tool for tissue engineering.


Subject(s)
Humans , Lactic Acid/administration & dosage , Mesenchymal Stem Cells/metabolism , Polyglycolic Acid/administration & dosage , Tissue Engineering/methods , Tissue Scaffolds , Vascular Endothelial Growth Factor A/administration & dosage , Cell Adhesion/drug effects , Cell Differentiation/drug effects , Cells, Cultured , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/enzymology , Nanofibers
20.
Braz. oral res. (Online) ; 31: e17, 2017. tab, graf
Article in English | LILACS | ID: biblio-839523

ABSTRACT

Abstract Periodontitis develops as a result of a continuous interaction between host cells and subgingival pathogenic bacteria. The periodontium has a limited capacity for regeneration, probably due to changes in periodontal ligament stem cells (PDLSCs) phenotype. The aim of this study was to evaluate the effects of lipopolysaccharides from Porphyromonas gingivalis (PgLPS) on mesenchymal phenotype and osteoblast/cementoblast (O/C) potential of PDLSCs. PDLSCs were assessed for Toll-like receptor 2 (TLR2) expression by immunostaining technique. After, cells were exposed to PgLPS, and the following assays were carried out: (i) cell metabolic activity using MTS; (ii) gene expression for IL-1β, TNF-α and OCT-4 by real-time polymerase chain reaction (RT-qPCR); (iii) flow cytometry for STRO-1 and CD105, and (iv) osteogenic differentiation. PDLSCs were positive for TLR2. PgLPS promoted cell proliferation, produced IL-1β and TNF-α, and did not affect the expression of stem cell markers, STRO-1, CD105 and OCT-4. Under osteogenic condition, PDLSCs exposed to PgLPS showed a similar potential to differentiate toward osteoblast/cementoblast phenotype compared to control group as revealed by mineralized matrix deposition and levels of transcripts for RUNX2, ALP and OCN. These results provide evidence that PgLPS induces pro-inflammatory cytokines, but does not change the mesenchymal phenotype and osteoblast/cementoblast differentiation potential of PDLSCs.


Subject(s)
Humans , Osteogenesis/drug effects , Periodontal Ligament/cytology , Lipopolysaccharides/toxicity , Porphyromonas gingivalis , Mesenchymal Stem Cells/drug effects , Time Factors , Gene Expression , Osteocalcin/analysis , Cell Differentiation/drug effects , Cell Survival/drug effects , Cells, Cultured , Tumor Necrosis Factor-alpha/analysis , Statistics, Nonparametric , Cell Proliferation/drug effects , Alkaline Phosphatase/analysis , Octamer Transcription Factor-3/analysis , Toll-Like Receptors/analysis , Core Binding Factor Alpha 1 Subunit/analysis , Interleukin-1beta/analysis , Mesenchymal Stem Cells/metabolism , Real-Time Polymerase Chain Reaction , Flow Cytometry
SELECTION OF CITATIONS
SEARCH DETAIL